Huo S et al (2016) Fully zwitterionic nanoparticle antimicrobial agents through tuning of core size
and ligand structure. ACS Nano 10:8732–8737
Iram NE et al (2015) Interaction mode of polycarbazole–titanium dioxide nanocomposite
with DNA: molecular docking simulation and in-vitro antimicrobial study. J Photochem
Photobiol B Biol 153:20–32
Jayaraman R (2009) Antibiotic resistance: an overview of mechanisms and a paradigm shift. Curr
Sci 96:1475–1484
Joost U et al (2015) Photocatalytic antibacterial activity of nano-TiO2 (anatase)-based thin films:
effects on Escherichia coli cells and fatty acids. J Photochem Photobiol B Biol 142:178–185
Khashan KS, Sulaiman GM, Ameer A, Kareem FA, Napolitano G (2016) Synthesis, characteriza-
tion and antibacterial activity of colloidal NiO nanoparticles. Pak J Pharm Sci 29:541–546
Knetsch ML, Koole LH (2011) New strategies in the development of antimicrobial coatings: the
example of increasing usage of silver and silver nanoparticles. Polymers 3:340–366
Lee J-H, Kim Y-G, Cho MH, Lee J (2014) ZnO nanoparticles inhibit Pseudomonas aeruginosa
biofilm formation and virulence factor production. Microbiol Res 169:888–896
Lellouche J, Friedman A, Gedanken A, Banin E (2012a) Antibacterial and antibiofilm properties of
yttrium fluoride nanoparticles. Int J Nanomedicine 7:5611
Lellouche J, Friedman A, Lahmi R, Gedanken A, Banin E (2012b) Antibiofilm surface
functionalization of catheters by magnesium fluoride nanoparticles. Int J Nanomedicine 7:1175
Lellouche J, Friedman A, Lellouche J-P, Gedanken A, Banin E (2012c) Improved antibacterial and
antibiofilm activity of magnesium fluoride nanoparticles obtained by water-based ultrasound
chemistry. Nanomed Nanotechnol Biol Med 8:702–711
Leroueil PR, Hong S, Mecke A, Baker JR Jr, Orr BG, Banaszak Holl MM (2007) Nanoparticle
interaction with biological membranes: does nanotechnology present a Janus face? Acc Chem
Res 40:335–342
Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Åberg C (2013) Nano-
particle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am
Chem Soc 135:1438–1444
Leuba
KD,
Durmus
NG,
Taylor
EN,
Webster
TJ
(2013)
Carboxylate
functionalized
superparamagnetic iron oxide nanoparticles (SPION) for the reduction of S. aureus growth
post biofilm formation. Int J Nanomedicine 8:731
Leung YH et al (2014) Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of
MgO nanoparticles towards Escherichia coli. Small 10:1171–1183
Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJ (2008) Antimicrobial
nanomaterials for water disinfection and microbial control: potential applications and
implications. Water Res 42:4591–4602
Li H, Chen Q, Zhao J, Urmila K (2015) Enhancing the antimicrobial activity of natural extraction
using the synthetic ultrasmall metal nanoparticles. Sci Rep 5:11033
Luan B, Huynh T, Zhou R (2016) Complete wetting of graphene by biological lipids. Nanoscale 8:
5750–5754
Lundberg ME, Becker EC, Choe S (2013) MstX and a putative potassium channel facilitate biofilm
formation in Bacillus subtilis. PLoS One 8:e60993
Magiorakos AP et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant
bacteria: an international expert proposal for interim standard definitions for acquired resistance.
Clin Microbiol Infect 18:268–281
Nagy A, Harrison A, Sabbani S, Munson RS Jr, Dutta PK, Waldman WJ (2011) Silver
nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of
antibacterial action. Int J Nanomedicine 6:1833
Nataraj N et al (2014) Synthesis and anti-staphylococcal activity of TiO2 nanoparticles and
nanowires in ex vivo porcine skin model. J Biomed Nanotechnol 10:864–870
Neethirajan S, Clond MA, Vogt A (2014) Medical biofilms—nanotechnology approaches. J
Biomed Nanotechnol 10:2806–2827
11
Nanoparticles: A Potential Breakthrough in Counteracting. . .
175